Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J Invest Dermatol ; 144(4): 888-897.e6, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37979772

RESUMEN

Cutaneous wounds are common afflictions that follow a stereotypical healing process involving hemostasis, inflammation, proliferation, and remodeling phases. In the elderly and those suffering from vascular or metabolic diseases, poor healing after cutaneous injuries can lead to open chronic wounds susceptible to infection. The discovery of new therapeutic strategies to improve this defective wound healing requires a better understanding of the cellular behaviors and molecular mechanisms that drive the different phases of wound healing and how these are altered with age or disease. The zebrafish provides an ideal model for visualization and experimental manipulation of the cellular and molecular events during wound healing in the context of an intact, living vertebrate. To facilitate studies of cutaneous wound healing in zebrafish, we have developed an inexpensive, simple, and effective method for generating reproducible cutaneous injuries in adult zebrafish using a rotary tool. We demonstrate that our injury system can be used in combination with high-resolution live imaging to monitor skin re-epithelialization, immune cell recruitment and activation, and vessel regrowth in the same animal over time. This injury system provides a valuable experimental platform to study key cellular and molecular events during wound healing in vivo with unprecedented resolution.


Asunto(s)
Piel , Pez Cebra , Animales , Adulto , Humanos , Anciano , Piel/diagnóstico por imagen , Piel/lesiones , Cicatrización de Heridas/fisiología , Repitelización , Inflamación
2.
Dev Biol ; 501: 92-103, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37353106

RESUMEN

During embryonic development, primitive and definitive waves of hematopoiesis take place to provide proper blood cells for each developmental stage, with the possible involvement of epigenetic factors. We previously found that lysine-specific demethylase 1 (LSD1/KDM1A) promotes primitive hematopoietic differentiation by shutting down the gene expression program of hemangioblasts in an Etv2/Etsrp-dependent manner. In the present study, we demonstrated that zebrafish LSD1 also plays important roles in definitive hematopoiesis in the development of hematopoietic stem and progenitor cells. A combination of genetic approaches and imaging analyses allowed us to show that LSD1 promotes the egress of hematopoietic stem and progenitor cells into the bloodstream during the endothelial-to-hematopoietic transition. Analysis of compound mutant lines with Etv2/Etsrp mutant zebrafish revealed that, unlike in primitive hematopoiesis, this function of LSD1 was independent of Etv2/Etsrp. The phenotype of LSD1 mutant zebrafish during the endothelial-to-hematopoietic transition was similar to that of previously reported compound knockout mice of Gfi1/Gfi1b, which forms a complex with LSD1 and represses endothelial genes. Moreover, co-knockdown of zebrafish Gfi1/Gfi1b genes inhibited the development of hematopoietic stem and progenitor cells. We therefore hypothesize that the shutdown of the Gfi1/Gfi1b-target genes during the endothelial-to-hematopoietic transition is one of the key evolutionarily conserved functions of LSD1 in definitive hematopoiesis.


Asunto(s)
Células Madre , Pez Cebra , Animales , Ratones , Diferenciación Celular , Hematopoyesis/genética , Histona Demetilasas/genética , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Angiogenesis ; 25(3): 411-434, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35320450

RESUMEN

The small monomeric GTPase RHOA acts as a master regulator of signal transduction cascades by activating effectors of cellular signaling, including the Rho-associated protein kinases ROCK1/2. Previous in vitro cell culture studies suggest that RHOA can regulate many critical aspects of vascular endothelial cell (EC) biology, including focal adhesion, stress fiber formation, and angiogenesis. However, the specific in vivo roles of RHOA during vascular development and homeostasis are still not well understood. In this study, we examine the in vivo functions of RHOA in regulating vascular development and integrity in zebrafish. We use zebrafish RHOA-ortholog (rhoaa) mutants, transgenic embryos expressing wild type, dominant negative, or constitutively active forms of rhoaa in ECs, pharmacological inhibitors of RHOA and ROCK1/2, and Rock1 and Rock2a/b dgRNP-injected zebrafish embryos to study the in vivo consequences of RHOA gain- and loss-of-function in the vascular endothelium. Our findings document roles for RHOA in vascular integrity, developmental angiogenesis, and vascular morphogenesis in vivo, showing that either too much or too little RHOA activity leads to vascular dysfunction.


Asunto(s)
Pez Cebra , Proteína de Unión al GTP rhoA , Animales , Animales Modificados Genéticamente , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Transducción de Señal , Pez Cebra/genética , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
4.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35142351

RESUMEN

The zebrafish has become a widely used animal model due, in large part, to its accessibility to and usefulness for high-resolution optical imaging. Although zebrafish research has historically focused mostly on early development, in recent years the fish has increasingly been used to study regeneration, cancer metastasis, behavior and other processes taking place in juvenile and adult animals. However, imaging of live adult zebrafish is extremely challenging, with survival of adult fish limited to a few tens of minutes using standard imaging methods developed for zebrafish embryos and larvae. Here, we describe a new method for imaging intubated adult zebrafish using a specially designed 3D printed chamber for long-term imaging of adult zebrafish on inverted microscope systems. We demonstrate the utility of this new system by nearly day-long observation of neutrophil recruitment to a wound area in living double-transgenic adult casper zebrafish with fluorescently labeled neutrophils and lymphatic vessels, as well as intubating and imaging the same fish repeatedly. We also show that Mexican cavefish can be intubated and imaged in the same way, demonstrating this method can be used for long-term imaging of adult animals from diverse aquatic species.


Asunto(s)
Microscopía Fluorescente/métodos , Pez Cebra/anatomía & histología , Animales , Animales Modificados Genéticamente/inmunología , Animales Modificados Genéticamente/metabolismo , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/metabolismo , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Neutrófilos/citología , Neutrófilos/inmunología , Neutrófilos/patología , Impresión Tridimensional , Imagen de Lapso de Tiempo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
5.
Development ; 149(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35132436

RESUMEN

The pectoral fins of teleost fish are analogous structures to human forelimbs, and the developmental mechanisms directing their initial growth and patterning are conserved between fish and tetrapods. The forelimb vasculature is crucial for limb function, and it appears to play important roles during development by promoting development of other limb structures, but the steps leading to its formation are poorly understood. In this study, we use high-resolution imaging to document the stepwise assembly of the zebrafish pectoral fin vasculature. We show that fin vascular network formation is a stereotyped, choreographed process that begins with the growth of an initial vascular loop around the pectoral fin. This loop connects to the dorsal aorta to initiate pectoral vascular circulation. Pectoral fin vascular development continues with concurrent formation of three elaborate vascular plexuses, one in the distal fin that develops into the fin-ray vasculature and two near the base of the fin in association with the developing fin musculature. Our findings detail a complex, yet highly choreographed, series of steps involved in the development of a complete, functional, organ-specific vascular network.


Asunto(s)
Aletas de Animales/anatomía & histología , Aletas de Animales/crecimiento & desarrollo , Pez Cebra/anatomía & histología , Pez Cebra/crecimiento & desarrollo , Animales
7.
Zebrafish ; 18(4): 235-242, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34077687

RESUMEN

The ability to carry out high-resolution, high-magnification optical imaging of living animals is one of the most attractive features of the zebrafish as a model organism. However, increasing amounts of pigmentation as development proceeds and difficulties in maintaining sustained immobilization of healthy, living animals remain challenges for live imaging. Chemical treatments can be used to suppress pigment formation and movement, but these treatments can lead to developmental defects. Genetic mutants can also be used to eliminate pigment formation and immobilize animals, but maintaining these mutants in lines carrying other combinations of transgenes and mutants is difficult and laborious. In this study, we show that CRISPR duplex guide ribonucleoproteins (dgRNPs) targeting the slc45a2 (albino) and chrna1 (nic1) genes can be used to efficiently suppress pigment formation in and immobilize F0 injected animals. CRISPR dgRNPs can be used to generate pigment-free, immobile zebrafish embryos and larvae in any transgenic and/or mutant-carrying background, greatly facilitating high-resolution imaging and analysis of the many transgenic and mutant lines available in the zebrafish.


Asunto(s)
Sistemas CRISPR-Cas , Pigmentación , Pez Cebra , Animales , Embrión no Mamífero , Antecedentes Genéticos , Larva , Pigmentación/genética , Ribonucleoproteínas/genética , Pez Cebra/genética
8.
Sci Rep ; 11(1): 10312, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986376

RESUMEN

The direction of visceral organ asymmetry is highly conserved during vertebrate evolution with heart development biased to the left and pancreas and liver development restricted to opposing sides of the midline. Here we show that reversals in visceral organ asymmetry have evolved in Astyanax mexicanus, a teleost species with interfertile surface-dwelling (surface fish) and cave-dwelling (cavefish) forms. Visceral organ asymmetry is conventional in surface fish but some cavefish have evolved reversals in heart, liver, and pancreas development. Corresponding changes in the normally left-sided expression of the Nodal-Pitx2/Lefty signaling system are also present in the cavefish lateral plate mesoderm (LPM). The Nodal antagonists lefty1 (lft1) and lefty2 (lft2), which confine Nodal signaling to the left LPM, are expressed in most surface fish, however, lft2, but not lft1, expression is absent during somitogenesis of most cavefish. Despite this difference, multiple lines of evidence suggested that evolutionary changes in L-R patterning are controlled upstream of Nodal-Pitx2/Lefty signaling. Accordingly, reciprocal hybridization of cavefish and surface fish showed that modifications of heart asymmetry are present in hybrids derived from cavefish mothers but not from surface fish mothers. The results indicate that changes in visceral asymmetry during cavefish evolution are influenced by maternal genetic effects.


Asunto(s)
Tipificación del Cuerpo , Characidae/embriología , Animales , Evolución Biológica , Femenino
9.
Angiogenesis ; 24(2): 251-269, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33449300

RESUMEN

Endothelial cells display an extraordinary plasticity both during development and throughout adult life. During early development, endothelial cells assume arterial, venous, or lymphatic identity, while selected endothelial cells undergo additional fate changes to become hematopoietic progenitor, cardiac valve, and other cell types. Adult endothelial cells are some of the longest-lived cells in the body and their participation as stable components of the vascular wall is critical for the proper function of both the circulatory and lymphatic systems, yet these cells also display a remarkable capacity to undergo changes in their differentiated identity during injury, disease, and even normal physiological changes in the vasculature. Here, we discuss how endothelial cells become specified during development as arterial, venous, or lymphatic endothelial cells or convert into hematopoietic stem and progenitor cells or cardiac valve cells. We compare findings from in vitro and in vivo studies with a focus on the zebrafish as a valuable model for exploring the signaling pathways and environmental cues that drive these transitions. We also discuss how endothelial plasticity can aid in revascularization and repair of tissue after damage- but may have detrimental consequences under disease conditions. By better understanding endothelial plasticity and the mechanisms underlying endothelial fate transitions, we can begin to explore new therapeutic avenues.


Asunto(s)
Diferenciación Celular , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Heridas y Lesiones/metabolismo , Pez Cebra/metabolismo , Animales , Arterias/metabolismo , Células Madre Hematopoyéticas , Humanos , Vasos Linfáticos/metabolismo , Venas/metabolismo , Heridas y Lesiones/terapia
10.
Methods Mol Biol ; 2206: 205-222, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32754820

RESUMEN

The zebrafish has emerged as a valuable and important model organism for studying vascular development and vascular biology. Here, we discuss some of the approaches used to study vessels in fish, including loss-of-function tools such as morpholinos and genetic mutants, along with methods and considerations for assessing vascular phenotypes. We also provide detailed protocols for methods used for vital imaging of the zebrafish vasculature, including microangiography and long-term time-lapse imaging. The methods we describe, and the considerations we suggest using for assessing phenotypes observed using these methods, will help ensure reliable, valid conclusions when assessing vascular phenotypes following genetic or experimental manipulation of zebrafish.


Asunto(s)
Angiografía/métodos , Vasos Sanguíneos/fisiología , Pez Cebra/fisiología , Animales , Vasos Sanguíneos/metabolismo , Morfolinos/metabolismo , Neovascularización Fisiológica/fisiología , Fenotipo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
11.
Circ Res ; 128(1): 42-58, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33135960

RESUMEN

RATIONALE: The recent discovery of meningeal lymphatics in mammals is reshaping our understanding of fluid homeostasis and cellular waste management in the brain, but visualization and experimental analysis of these vessels is challenging in mammals. Although the optical clarity and experimental advantages of zebrafish have made this an essential model organism for studying lymphatic development, the existence of meningeal lymphatics has not yet been reported in this species. OBJECTIVE: Examine the intracranial space of larval, juvenile, and adult zebrafish to determine whether and where intracranial lymphatic vessels are present. METHODS AND RESULTS: Using high-resolution optical imaging of the meninges in living animals, we show that zebrafish possess a meningeal lymphatic network comparable to that found in mammals. We confirm that this network is separate from the blood vascular network and that it drains interstitial fluid from the brain. We document the developmental origins and growth of these vessels into a distinct network separated from the external lymphatics. Finally, we show that these vessels contain immune cells and perform live imaging of immune cell trafficking and transmigration in meningeal lymphatics. CONCLUSIONS: This discovery establishes the zebrafish as a important new model for experimental analysis of meningeal lymphatic development and opens up new avenues for probing meningeal lymphatic function in health and disease.


Asunto(s)
Linfangiogénesis , Vasos Linfáticos/fisiología , Meninges/fisiología , Microscopía Confocal , Imagen Óptica , Animales , Animales Modificados Genéticamente , Linfangiogénesis/efectos de los fármacos , Vasos Linfáticos/efectos de los fármacos , Vasos Linfáticos/inmunología , Meninges/inmunología , Infiltración Neutrófila , Neutrófilos/inmunología , Factor C de Crecimiento Endotelial Vascular/farmacología , Pez Cebra/genética
12.
Commun Biol ; 3(1): 734, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277595

RESUMEN

The preferential accumulation of vascular smooth muscle cells (vSMCs) on arteries versus veins during early development is a well-described phenomenon, but the molecular pathways underlying this polarization are not well understood. In zebrafish, the cxcr4a receptor (mammalian CXCR4) and its ligand cxcl12b (mammalian CXCL12) are both preferentially expressed on arteries at time points consistent with the arrival and differentiation of the first vSMCs during vascular development. We show that autocrine cxcl12b/cxcr4 activity leads to increased production of the vSMC chemoattractant ligand pdgfb by endothelial cells in vitro and increased expression of pdgfb by arteries of zebrafish and mice in vivo. Additionally, we demonstrate that expression of the blood flow-regulated transcription factor klf2a in primitive veins negatively regulates cxcr4/cxcl12 and pdgfb expression, restricting vSMC recruitment to the arterial vasculature. Together, this signalling axis leads to the differential acquisition of vSMCs at sites where klf2a expression is low and both cxcr4a and pdgfb are co-expressed, i.e. arteries during early development.


Asunto(s)
Quimiocinas/metabolismo , Músculo Liso Vascular/citología , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Ratones , Mutación , Miocitos del Músculo Liso , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal , Pez Cebra
13.
Nat Commun ; 11(1): 5458, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093486

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Nat Commun ; 11(1): 2772, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32487986

RESUMEN

Vestigial structures are key indicators of evolutionary descent, but the mechanisms underlying their development are poorly understood. This study examines vestigial eye formation in the teleost Astyanax mexicanus, which consists of a sighted surface-dwelling morph and multiple populations of blind cave morphs. Cavefish embryos initially develop eyes, but they subsequently degenerate and become vestigial structures embedded in the head. The mutated genes involved in cavefish vestigial eye formation have not been characterized. Here we identify cystathionine ß-synthase a (cbsa), which encodes the key enzyme of the transsulfuration pathway, as one of the mutated genes responsible for eye degeneration in multiple cavefish populations. The inactivation of cbsa affects eye development by increasing the transsulfuration intermediate homocysteine and inducing defects in optic vasculature, which result in aneurysms and eye hemorrhages. Our findings suggest that localized modifications in the circulatory system may have contributed to the evolution of vestigial eyes in cavefish.


Asunto(s)
Cistationina betasintasa/genética , Cistationina/metabolismo , Ojo/embriología , Ojo/metabolismo , Peces/fisiología , Animales , Apoptosis , Evolución Biológica , Encéfalo/embriología , Sistema Cardiovascular , Cistationina betasintasa/metabolismo , Biología Evolutiva , Ojo/citología , Ojo/crecimiento & desarrollo , Femenino , Peces/embriología , Peces/genética , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Cabeza , Cristalino/citología , Cristalino/metabolismo , Masculino , Modelos Animales
15.
Nat Commun ; 11(1): 1204, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139674

RESUMEN

Anti-angiogenic therapies have generated significant interest for their potential to combat tumor growth. However, tumor overproduction of pro-angiogenic ligands can overcome these therapies, hampering success of this approach. To circumvent this problem, we target the resynthesis of phosphoinositides consumed during intracellular transduction of pro-angiogenic signals in endothelial cells (EC), thus harnessing the tumor's own production of excess stimulatory ligands to deplete adjacent ECs of the capacity to respond to these signals. Using zebrafish and human endothelial cells in vitro, we show ECs deficient in CDP-diacylglycerol synthase 2 are uniquely sensitive to increased vascular endothelial growth factor (VEGF) stimulation due to a reduced capacity to re-synthesize phosphoinositides, including phosphatidylinositol-(4,5)-bisphosphate (PIP2), resulting in VEGF-exacerbated defects in angiogenesis and angiogenic signaling. Using murine tumor allograft models, we show that systemic or EC specific suppression of phosphoinositide recycling results in reduced tumor growth and tumor angiogenesis. Our results suggest inhibition of phosphoinositide recycling provides a useful anti-angiogenic approach.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Endotelio Vascular/metabolismo , Fosfatidilinositoles/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Aloinjertos/efectos de los fármacos , Animales , Bovinos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diacilglicerol Colinafosfotransferasa/deficiencia , Diacilglicerol Colinafosfotransferasa/metabolismo , Endotelio Vascular/efectos de los fármacos , Eliminación de Gen , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones Noqueados , Modelos Biológicos , Neovascularización Fisiológica/efectos de los fármacos , Especificidad de Órganos , Transducción de Señal , Pez Cebra
16.
Elife ; 82019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31478836

RESUMEN

The post-transcriptional mechanisms contributing to molecular regulation of developmental lymphangiogenesis and lymphatic network assembly are not well understood. MicroRNAs are important post-transcriptional regulators during development. Here, we use high throughput small RNA sequencing to identify miR-204, a highly conserved microRNA dramatically enriched in lymphatic vs. blood endothelial cells in human and zebrafish. Suppressing miR-204 leads to loss of lymphatic vessels while endothelial overproduction of miR-204 accelerates lymphatic vessel formation, suggesting a critical positive role for this microRNA during developmental lymphangiogenesis. We also identify the NFATC1 transcription factor as a key miR-204 target in human and zebrafish, and show that NFATC1 suppression leads to lymphatic hyperplasia. The loss of lymphatics caused by miR-204 deficiency can be largely rescued by either endothelial autonomous expression of miR-204 or by suppression of NFATC1. Together, our results highlight a miR-204/NFATC1 molecular regulatory axis required for proper lymphatic development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Linfangiogénesis , MicroARNs/metabolismo , Factores de Transcripción NFATC/metabolismo , Animales , Células Endoteliales/fisiología , Humanos , Pez Cebra
17.
Nat Med ; 25(7): 1116-1122, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31263281

RESUMEN

The treatment of lymphatic anomaly, a rare devastating disease spectrum of mostly unknown etiologies, depends on the patient manifestations1. Identifying the causal genes will allow for developing affordable therapies in keeping with precision medicine implementation2. Here we identified a recurrent gain-of-function ARAF mutation (c.640T>C:p.S214P) in a 12-year-old boy with advanced anomalous lymphatic disease unresponsive to conventional sirolimus therapy and in another, unrelated, adult patient. The mutation led to loss of a conserved phosphorylation site. Cells transduced with ARAF-S214P showed elevated ERK1/2 activity, enhanced lymphangiogenic capacity, and disassembly of actin skeleton and VE-cadherin junctions, which were rescued using the MEK inhibitor trametinib. The functional relevance of the mutation was also validated by recreating a lymphatic phenotype in a zebrafish model, with rescue of the anomalous phenotype using a MEK inhibitor. Subsequent therapy of the lead proband with a MEK inhibitor led to dramatic clinical improvement, with remodeling of the patient's lymphatic system with resolution of the lymphatic edema, marked improvement in his pulmonary function tests, cessation of supplemental oxygen requirements and near normalization of daily activities. Our results provide a representative demonstration of how knowledge of genetic classification and mechanistic understanding guides biologically based medical treatments, which in our instance was life-saving.


Asunto(s)
Anomalías Linfáticas/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Mutación , Proteínas Proto-Oncogénicas A-raf/genética , Piridonas/uso terapéutico , Pirimidinonas/uso terapéutico , Adulto , Animales , Niño , Femenino , Células HEK293 , Humanos , Anomalías Linfáticas/tratamiento farmacológico , Masculino , Secuenciación del Exoma , Pez Cebra
18.
Front Cell Dev Biol ; 7: 89, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31192207

RESUMEN

Since its introduction, the zebrafish has provided an important reference system to model and study cardiovascular development as well as lymphangiogenesis in vertebrates. A scientific workshop, held at the 2018 European Zebrafish Principal Investigators Meeting in Trento (Italy) and chaired by Massimo Santoro, focused on the most recent methods and studies on cardiac, vascular and lymphatic development. Daniela Panáková and Natascia Tiso described new molecular mechanisms and signaling pathways involved in cardiac differentiation and disease. Arndt Siekmann and Wiebke Herzog discussed novel roles for Wnt and VEGF signaling in brain angiogenesis. In addition, Brant Weinstein's lab presented data concerning the discovery of endothelium-derived macrophage-like perivascular cells in the zebrafish brain, while Monica Beltrame's studies refined the role of Sox transcription factors in vascular and lymphatic development. In this article, we will summarize the details of these recent discoveries in support of the overall value of the zebrafish model system not only to study normal development, but also associated disease states.

19.
Nat Ecol Evol ; 2(7): 1155-1160, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29807993

RESUMEN

Coding and non-coding mutations in DNA contribute significantly to phenotypic variability during evolution. However, less is known about the role of epigenetics in this process. Although previous studies have identified eye development genes associated with the loss-of-eyes phenotype in the Pachón blind cave morph of the Mexican tetra Astyanax mexicanus, no inactivating mutations have been found in any of these genes. Here, we show that excess DNA methylation-based epigenetic silencing promotes eye degeneration in blind cave A. mexicanus. By performing parallel analyses in A. mexicanus cave and surface morphs, and in the zebrafish Danio rerio, we have discovered that DNA methylation mediates eye-specific gene repression and globally regulates early eye development. The most significantly hypermethylated and downregulated genes in the cave morph are also linked to human eye disorders, suggesting that the function of these genes is conserved across vertebrates. Our results show that changes in DNA methylation-based gene repression can serve as an important molecular mechanism generating phenotypic diversity during development and evolution.


Asunto(s)
Characidae/genética , Metilación de ADN , Epigénesis Genética/genética , Ojo/crecimiento & desarrollo , Silenciador del Gen , Animales , Evolución Biológica , Cuevas , Characidae/crecimiento & desarrollo , Fenotipo
20.
Wiley Interdiscip Rev Dev Biol ; 7(3): e312, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29436122

RESUMEN

Hematopoiesis is a complex process with a variety of different signaling pathways influencing every step of blood cell formation from the earliest precursors to final differentiated blood cell types. Formation of blood cells is crucial for survival. Blood cells carry oxygen, promote organ development and protect organs in different pathological conditions. Hematopoietic stem and progenitor cells (HSPCs) are responsible for generating all adult differentiated blood cells. Defects in HSPCs or their downstream lineages can lead to anemia and other hematological disorders including leukemia. The zebrafish has recently emerged as a powerful vertebrate model system to study hematopoiesis. The developmental processes and molecular mechanisms involved in zebrafish hematopoiesis are conserved with higher vertebrates, and the genetic and experimental accessibility of the fish and the optical transparency of its embryos and larvae make it ideal for in vivo analysis of hematopoietic development. Defects in zebrafish hematopoiesis reliably phenocopy human blood disorders, making it a highly attractive model system to screen small molecules to design therapeutic strategies. In this review, we summarize the key developmental processes and molecular mechanisms of zebrafish hematopoiesis. We also discuss recent findings highlighting the strengths of zebrafish as a model system for drug discovery against hematopoietic disorders. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Vertebrate Organogenesis > Musculoskeletal and Vascular Nervous System Development > Vertebrates: Regional Development Comparative Development and Evolution > Organ System Comparisons Between Species.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Hematológicas/genética , Hematopoyesis , Leucemia/genética , Pez Cebra/genética , Animales , Enfermedades Hematológicas/patología , Leucemia/patología , Pez Cebra/embriología , Pez Cebra/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...